
Biochem. J. (1986) 240, 357-360 (Printed in Great Britain)

A suitable parameterization of the Michaelis-Menten
enzyme reaction
D. A. RATKOWSKY
CSIRO Division of Mathematics and Statistics, Tasmanian Regional Laboratory, Stowell Avenue, Hobart,
Tasmania 7000, Australia

It is shown here that a suitable form for estimation and inference using the Michaelis-Menten [(1913)
Biochem Z. 49, 333-369] model for simple enzymic reactions is one in which the two parameters appear
in the denominator of the equation. In this form, convergence to the least-squares estimates using the
Gauss-Newton method [see Kennedy & Gentle (1980) Statistical Computing, Marcel Dekker, New York]
is virtually ensured, or, as the model in this form is a member of the class of 'generalized linear models',
it may be fitted by packages such as those of Rothamsted Experimental Station [(1977) GENSTAT (A
General Statistical Program), Rothamsted Experimental Station, Harpenden] and the Numerical Algorithms
Group [(1978) GLIM (Generalised Linear Interactive Modelling), Numerical Algorithms Group, Oxford].
Furthermore, the parameters-in-denominator principle is readily extended to more complicated catalytic
models. With all parameters in the denominator, the least-squares estimators are close to being unbiased
and normally distributed, whereas severe bias and non-normality may result from use of the standard
formulations.

INTRODUCTION
One of the most commonly used formulations for

modelling enzyme kinetic reactions, where a single
substrate forms a complex with the enzyme, is the
Michaelis-Menten (1913) model expressed as:

= Vmx[S] (1)

where v is the velocity of the reaction, [S] is the substrate
concentration, and Vmax. and Km are parameters to be
estimated. This is the equation of a rectangular
hyperbola, with Vmax representing the maximum
velocity theoretically obtainable and Km being the value
of [S] at which the velocity is half the maximum velocity.

If the errors in v about the regression model can be
assumed to be normally distributed and of the same
magnitude for all substrate concentrations, [S], then the
appropriate procedure is to use non-linear least squares.
An exact solution can be obtained using the Gauss-
Newton method [see Chapter 10 of Kennedy & Gentle
(1980)], which requires good initial estimates of the
parameters. Nevertheless, it is important to realize that,
unlike linear-regression models, where the least-squares
estimators are unbiased, normally distributed, minimum-
variance estimators, the estimators of the parameters in
non-linear models may be badly biased, non-normally
distributed and have variances greatly in excess of the
minimum possible variance. This bias exists because the
regression model is non-linear in its parameters.
However, as the sample size increases toward infinity, the
bias diminishes, the distribution of the estimator
becomes more normal and the excess variance decreases,
thereby approaching more and more closely the
condition for a linear model. Some non-linear regression
models approach the large-sample behaviour even in
small samples; I termed such models 'close-to-linear'
(Ratkowsky, 1983) and advocated searching for, and
identifying, such models for practical use.
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Eqn. (1) may be reparameterized by putting the
parameters in the denominator, that is, by rewriting it as
follows: ,

[S]V= 01[S]+02 (2)

Here, the parameter 0, is simply 1/Vmax., the reciprocal
of the maximum velocity, and parameter 02 is Ki!/ Vmax,
the ratio of the two parameters in eqn. (1). In a study of
general formulations for modelling catalytic chemical
reactions, I (Ratkowsky, 1985) concluded that putting
the parameters in the denominator was the way of
obtaining a close-to-linear model for that class of
problems. Eqn. (2) is an example of that class, the only
difference being that the reaction is biochemical instead
of chemical.

STATISTICAL METHODS
I (Ratkowsky, 1983) described methodology for

examining the statistical properties of the least-squares
estimators of the parameters in non-linear regression
models. Among the various available measures are the
curvature measures of intrinsic (IN) and parameter-
effects (PE) non-linearities of Bates & Watts (1980), the
bias measure of Box (1971) and the asymmetry measure
of non-linearity of Lowry & Morton (1983). IN
measures the curvature of the solution locus and should
be close to zero if the solution locus is acceptably
straight. Reparameterization does not alter the solution
locus, so all parameterizations of the same basic model
have the same IN values. PE measures the straightness,
parallelism and equi-spacedness of the parameter lines
on the solution locus (actually on the tangent plane to the
solution locus) and should be close to zero for a
close-to-linear model. The bias measure of Box (1971)
quantifies the extent of the bias in the estimates of the
parameters. The Lowry & Morton (1983) A-values give
a measure of the non-linear behaviour of the estimator
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for each parameter separately. A rule of thumb based on
extensive use of this measure is that if A < 0.01, the
estimator is close-to-linear, but larger values indicate
increasing skewness in the distribution of the estimator.
IfA > 0.05, the skewness is very perceptible if histograms
of the estimates are drawn after carrying out the
simulation study I described (Ratkowsky, 1983).
To obtain initial estimates of 01 and 62, eqn. (2) can be

rewritten in the following form:

[S] = 01[SI+02
V

so that by regressing [S]/v versus [S] or graphically
plotting [S]/v versus [S] [the Hanes (1932) plot], initial
estimates are obtained that can then be used in
conjunction with the Gauss-Newton method to deter-
mine the least-squares estimates, 6, and 02, of 01 and 02
respectively. Watts (1981) graphically demonstrated why
the linear approximation method first proposed by
Gauss and used in the Gauss-Newton method ensures
rapid convergence for a close-to-linear model. This is
because the solution locus is closely approximated by the
tangent plane and because the uniform co-ordinate
system of straight, parallel and equi-spaced lines on the
tangent plane closely approximates the positioning and
spacing of parameter curves on the solution locus. If the
model were exactly linear, convergence would be
achieved in a single step from any starting point [see
Ratkowsky (1983) for a proof of this]. A close-to-linear
model requires more than one step, but convergence will
be rapid.
Once 6. and 62 have been obtained, the least-squares

estimates, Vmax. and Km, of the parameters Vmax. and
Km of eqn. (1) are readily obtained by direct substitution
into the formulae Vmax. = I/01 and Km = 62/61. An
estimate of variance (0.2) of Km may be obtained from:

2= K 2[Qi/61 ) + (-22/622) ( 12/1102)I
where all2, &2 and2 12 are estimates of the variance of 61,
the variance of 02 and the covariance of 01 and 02
respectively. Approx. 95% confidence limits for Km are
then obtained from Km + 26YK
A total of eleven data setsmare considered here. The

data sets are taken from the following sources: (1) Bates
& Watts, 1980, p.10; (2) Wilkinson, 1961, p. 329; (3)
Wong, 1975, p. 245; (4)-(6) Bliss, 1970, p. 101, 103 and
113; (7)-(11) Apitz et al., 1971, p. 361.

RESULTS
Table 1 presents results for IN and PE for eqns. (1) and

(2). Data sets having similar values of these measures
have been grouped, and average values are presented. As
IN is unaltered by a reparameterization, its values are the
same for both models. For all data sets, IN is adequately
low, and only for data set 10 does IN approach
significance. PE is higher in every case of eqn. (1) than
for eqn. (2), being significantly high for six of the data
sets compared with only one significant value for eqn. (2).

Table 2 presents values of the bias in each of the
parameter estimates, calculated by using the formula of
Box (1971). In every case, the magnitude of the bias in
the parameter estimates of eqn. (1) is greater than the
bias in the estimates of eqn. (2), being in excess of 20%
for both parameters for data set 10 for eqn. (1) compared
with less than 2% for eqn. (2).

Table 1. Intrinsic (IN) and parameter-effects (PE) non-linearity
measures of Bates & Watts (1980)

Average values are given for data sets having similar
values of IN and PE. An asterisk (*) indicates significance
at the 5% level.

Non-linearity measure

IN PE

Data set Eqns. (1) and (2) Eqn. (1) Eqn. (2)

4,5,6,8 0.021 0.078 0.039
2,7 0.046 0.182 0.078
11 0.044 0.301* 0.100
1,3,9 0.077 0.560* 0.171
10 0.147 1.619* 0.291*

Table 2. Bias in each parameter estimate, expressed as a
percentage of the estimate, calculated by using the
formula of Box (1971)

Average values are given for data sets having similar
values of bias.

Bias in Bias in
estimates estimates
of Eqn. of Eqn.

Data set Parameter (1) (%) Parameter (2) (%)

4,5,6,8 Vmax. 0.042 01 0.002
Km 0.126 02 0.033

2,7 Vmax. 0.248 01 -0.024
Km 0.635 02 0.133

11 Vmax. 0.809 01 -0.070
Km 1.496 02 0.184

1,3,9 Vmax. 2.908 01 -0.241
Km 5.206 02 0.581

10 Vmax. 28.8 01 -1.547
Km 42.3 02 1.707

Table 3. Values of the asymmetry measures A
Morton (1983)

of Lowry and

Average values are given for data sets having similar
asymmetries. The values are also averaged over both
parameters.

A-Value

Data set Eqn. (1) Eqn. (2)

4,5,6,8
2,7
11
1,3,9
10

0.001
0.007
0.019
0.066
0.387

0.001
0.002
0.003
0.009
0.027

Table 3 presents values of the Lowry-Morton (1983)
asymmetry measure, A. For eqn. (1), A exceeds 0.05 for
four data sets, indicating perceptible skewness (and thus
non-normality) in the distribution of the estimator. In no
case does A excess 0.05 for eqn. (2).
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Fig. 1. Results of simulation study of 1000 trials for data set 10

Histograms of estimates of Vm,. and Km are from eqn. (1), and histograms of estimates of 0A and 02 are from eqn. (2). In
each case, the abscissa shows the distribution of the estimates standardized to have zero mean and unit variance. The ordinates
represent the class frequencies.

Fig. 1 presents results of a simulation study of 1000
trials carried out for data set 10. The estimates of
parameters 01 and 02 of eqn. (2) are both close to being
normally distributed, which is what is expected from a
close-to-linear model. In contrast, the estimates of
parameters Vmax. and Km exhibit extraordinary non-
normal behaviour, with one estimate of each parameter
appearing more than 20 S.D. away from the mean, and
five other estimates -being situated more than 5 S.D. from
the mean.

DISCUSSION

The results presented in Tables 1, 2 and 3 show
decisively that eqn. (1) is inferior to eqn. (2) in its
statistical properties. For every data set, the parameters
01 and 02 of eqn. (2) have estimators which are closer to
being unbiased, normally distributed, minimum variance
estimators than the estimators of Vmax. and Km in eqn.
(1). The results of the simulation study of data set 10
presented in Fig. 1 indicate that estimates of Km and
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Vmax can be obtained which are very different from their
true values. This implies that the continued use of eqn.
(1) may, for some data sets at least, lead to grossly
misleading results. The estimators of the parameters of
eqn. (2), however, always exhibits good statistical
behaviour for each of the data sets.
The principle used to obtain eqn. (2) extends readily to

more complicated models. One simply has to ensure that
all parameters appear in the denominator of the
expression. I showed this principle to produce a model
that was close-to-linear in behaviour for catalytic
reactions of the type used in the chemical process
industries (Ratkowsky, 1985). For example, consider the
following rate equation, which involves three concen-
trations (C1, C2 and C3) and four parameters (Vmax., Ka,
Kb and Kc):

V = Vmax KaKbClC2
1 + KaCl+ KaKbClC2 + KaKcClC3

Simply dividing numerator and denominator by
Vmax KaKb to give:

v= CIC2
V19+ 02CI+ 03C1C2+ 04C1C3

produces a model form in which the new parameters (01,
02, 03 and 04) give rise to least-squares estimators with
better statistical properties than the least-squares esti-
mators of Vmax. Ka, Kb and K,. Equations of the above
form appear often in biochemical kinetics, and these
equations are very amenable to rearrangement as
follows:

- 01+02C1+ 03C1C2+04C1C3

so that multiple linear regression of C1C2/v on C1, C1C2
and C1C3 produces estimates of 01, 02, 03 and 04 which
serve as good initial estimates for the non-linear
least-squares regression. Rapid convergence from the
initial estimates to the least-squares estimates should
occur when the Gauss-Newton method is used.
A further advantage of the 'parameters-in-denomin-

ator' models is that they conform to the specifications of
generalized linear models (Nelder & Wedderburn, 1972)
and therefore can be fitted by computer packages such as
GENSTAT (Rothamsted Experimental Station, 1977)
and GLIM (Numerical Algorithms Group, 1978). Eqn.
(2) may be rewritten as:

1
=1 + 02(1/[S])

in which case the denominator is a linear expression
(called a 'linear predictor'). The linear predictor is
related to the fitted values of the dependent variable via
an 'inverse" or 'reciprocal' link function. When this
model is fitted by using the GLIM or GENSTAT
program, the same estimates 61 and 02 are obtained as are
obtained by using the Gauss-Newton method. Estimates
of their standard errors are also the same. Similarly,

more complex models such as eqn. (5) are converted into
generalized linear models by dividing the numerator and
denominator by C1C2. The resulting denominator is a
linear predictor and is related to v via a reciprocal (or
inverse) link. Users need not supply initial parameter
estimates since these are generated internally by the
GLIM and GENSTAT programs.

There will be times when the assumption of indepen-
dent and identically distributed normal error will not be
tenable. If the errors are normally distributed but have
variances which depend upon the substrate concen-
tration, then weighted regression needs to be employed.
The appropriate weighting is to make the weights
inversely proportional to the variance corresponding to
a given substrate concentration. Hence, by using eqn. (2),
one would carry out the non-linear regression by
minimizing:

n
Q = I WjVi- [S]6/(1[S]i + 02)]2

i-1

where n is the number of data points, [S]i and vi are the
substrate concentration and reaction velocity respectively
for the ith data point, and wi is the weight which will be
chosen to be inversely proportional to the variance 0-,2
corresponding to [S]i. For the independent and identically
distributed normal-error case discussed above, all wi
values are identical, so this term may be omitted from the
expression.
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